

TEVAdrive|know|talk|show|view|link|spare

Owning an Electric Vehicle in Ontario with Paul Sr. and Paul Jr.

Types of Electric Car Drivetrains

Plug-In Hybrid Vehicle (PHEV)

Fuel Cell Vehicle (FCV)

a.k.a. hydrogen

Alternative Electric Vehicles

Availability

Price Range

Used (2008-2016)

New (2017)

Future (2018 - 2020)

Incentives

Ontario Government Incentives: purchasing or leasing a new electric vehicle*

Parameters: battery capacity, battery size, seats, and type of drivetrain

Purchase \$3,000 - \$14,000

1 Year Lease 33% of incentives

> 2 Year Lease 66%

> 3 Year Lease Full

*BEV: No incentives for cars over \$150,000.

PHEV: " " + MSRP \$75k - \$150k get max \$3k incentives

Full list of available incentives:

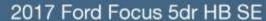
Ontario Government Incentives: purchasing a new charging station

Parameters: charging level, residential or commercial, charger port count, location of purchase

Rebate Coverage: 50% of cost (up to \$500)

+

50% of installation cost (up to \$500) (max value of \$1k)


Level 2
Charging Stations

Level 3
Charging Stations

Full list of eligible charging stations:

Electric vs Gas

BEV vs ICE savings

BEV's

- (avg.) \$2.25/100km

ICE cars

(avg.) \$13.79/100km -

based on 2000km/month:

- energy costs \$45

energy costs \$275 -

net energy saving (BEV): \$230

+ substantial maintenance cost savings

Chargers

Level 1 120 Volts / 15 Amps

Level 2 240 Volts / 20 - 80 Amps

Level 3 480 Volts / 100+ Amps

- slowest charging
- cheapest charger
- available for every car

SAE J1772

- moderate charging
- cost-effective charger*
- available for every car *with incentives

SAE J1772

Tesla

- fast charging
- only business sales
- available for all BEV's
- some availability for PHEV's SAE J1772

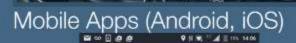
CHAdeMO

Combo

Tesla

In-Car GPS

"OK... but how do I find them?"


Desktop Websites

ChargePoint

FLO

myEVRoute

Cost of Ownership

Maintenance

Reliability

Lifespan

\$\$\$\$\$

\$\$\$\$\$

\$\$\$\$

- fewer moving parts
- no oil changes

- very minimal fluid replacements
- minimal use of brakes (regen)
- 2015 Chevy Spark EV

- temperatures affect battery range
- occasional software updates needed
- fewer breakdowns than ICE cars
- rare case: battery pack replacement
- 2017 VW e-Up drivetrain

- thermal management
- (+,-) %5 range loss: 300k km (i.e. Tesla)
- can easily outlive ICE cars
- frequency of fast charging

1909 Baker Electric (with Jay Leno)

Experience with a BEV, PHEV, and REx

BEV: 2012 Mitsubishi i-MiEV

- Dec. 2011 to Nov. 2013
- third family car
- city use only
- early adopter
- lack of early public charging infrastructure
- home + office charging only

PHEV: 2014 Ford Fusion Energi

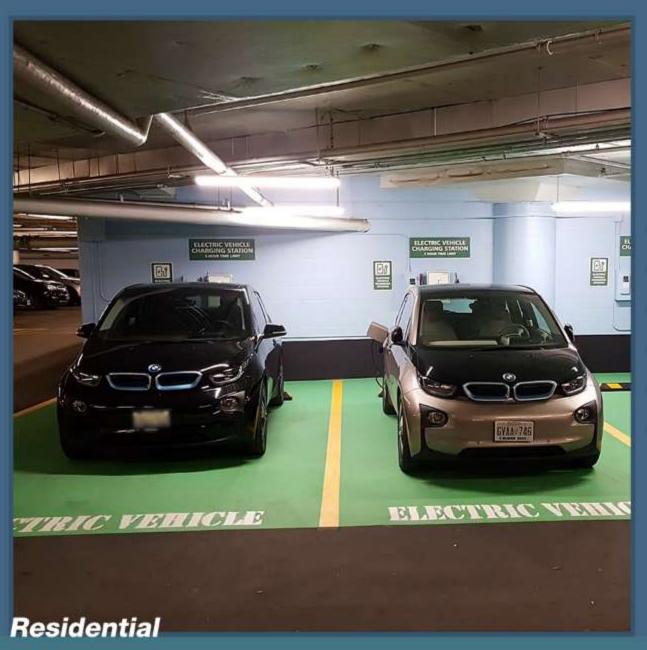
- Nov. 2013 to Mar. 2016
- most versatile
- can be the only family car
- intercity trips possible
- personal record: 4 months and 6000km on 1 tank of gas
- short EV range
- high performance in hybrid mode
- low performance in EV mode

REx: 2015 BMW i3

- Mar. 2016 to present
- long EV range
- high performance in EV mode
- low performance in REx mode
- newest model 50% more range
- intercity trips possible
- fast charging option recommended
- unique car with high tech structure, design, finishes (carbon fibre)

BEV vs PHEV vs REx Which one is for you?

Experience


Residential

Homes & EV's

- level 1 or 2 charging
- self installed or professional
- easy to do
- average cost: \$0 to \$10,000

Condos / Apartments & EV's

- level 1 or 2 charging
- difficult installation
- board/mgmt approval needed
- high cost \$5,000 to \$20,000
- shared charging recommended
- separate metering needed

Acquisition

Getting an EV...

Now Later

Pros

- limited time government incentives
- affordable used EV's

Cons

- better tech around the corner
- lacking public charging infrastructure

Acquisition

Pros

- longer range
- lower prices

Cons

- limited time government incentives
- incentives canceled by new government after elections?

And now a few words from kevric

Q&A / Discussion

please visit:
teva.one (website)
teva.zone (youtube)
facebook.ca/tevassociation
twitter.ca/torontoev

THANK YOU